
RESEARCH ARTICLE

Characterization of microRNA expression in B

cells derived from Japanese black cattle

naturally infected with bovine leukemia virus

by deep sequencing

Chihiro Ochiai1¤a, Sonoko Miyauchi1¤b, Yuta Kudo1¤c, Yuta Naruke1, Syuji Yoneyama2,

Keisuke Tomita2, Leng Dongze2, Yusuke Chiba2, To-ichi Hirata3, Toshihiro Ichijo1,

Kazuya Nagai1, Sota Kobayashi4, Shinji Yamada1,2, Hirokazu Hikono5,

Kenji MurakamiID
1,2*

1 Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate,

Japan, 2 Graduate School of Veterinary Sciences, Iwate University, Morioka, Iwate, Japan, 3 Field Science

Center, Faculty of Agriculture, Iwate University, Shizukuishi, Iwate, Japan, 4 Division of Bacterial and

Parasitic Disease, National Institute of Animal Health, Tsukuba, Ibaraki, Japan, 5 Department of Animal

Sciences, Teikyo University of Science, Adachi, Tokyo, Japan

¤a Current address: Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and

Fisheries, Tokyo, Japan

¤b Current address: Department of Agriculture, Forestry and Fisheries, Ehime Prefectural Government,

Ehime, Japan

¤c Current address: Department of Agriculture, Forestry and Fisheries, Iwate Prefectural Government, Iwate,

Japan

* muraken@iwate-u.ac.jp

Abstract

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a

malignant B cell lymphoma. However, the mechanisms of BLV-associated lymphomagen-

esis remain poorly understood. Here, after deep sequencing, we performed comparative

analyses of B cell microRNAs (miRNAs) in cattle infected with BLV and those without BLV.

In BLV-infected cattle, BLV-derived miRNAs (blv-miRNAs) accounted for 38% of all miRNAs

in B cells. Four of these blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and

blv-miR-B5-5p) had highly significant positive correlations with BLV proviral load (PVL). The

read counts of 90 host-derived miRNAs (bta-miRNAs) were significantly down-regulated in

BLV-infected cattle compared to those in uninfected cattle. Only bta-miR-375 had a positive

correlation with PVL in BLV-infected cattle and was highly expressed in the B cell lymphoma

tissue of EBL cattle. There were a few bta-miRNAs that correlated with BLV tax/rex gene

expression; however, BLV AS1 expression had a significant negative correlation with many

of the down-regulated bta-miRNAs that are important for tumor development and/or tumor

suppression. These results suggest that BLV promotes lymphomagenesis via AS1 and blv-

miRNAs, rather than tax/rex, by down-regulating the expression of bta-miRNAs that have a

tumor-suppressing function, and this downregulation is linked to increased PVL.
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Introduction

Bovine leukemia virus (BLV) is an RNA virus belonging to the genus Delta retrovirus, family

Retroviridae, and is closely related to human T-lymphotropic virus-1 (HTLV-1) [1]. BLV is the

causative agent of enzootic bovine leukosis (EBL), a malignant B cell lymphoma [2, 3].

Although the welfare consequences may vary according to the location of lymphomas and

magnitude of organ involvement, animals suffer when lymphomas have progressed beyond

early stages. BLV infection is prevalent worldwide, causing large economic losses in the cattle

industry. In Japan, a nationwide survey (2010–2011) of BLV revealed that the prevalence was

28.7% and 40.7% in beef breeding and dairy cattle, respectively [4]. Major dairy producing

countries, including the United States, Canada, Argentina, and China, have also reported BLV

prevalences of 30% to 50% in their dairy herds [5–8]. The following countries and regions

around the world have also reported moderate increases in BLV, with prevalences of 2.3% in

Turkey [9], 41.3% in Iran [10], 3.9% in Mongolia [11], 9.7% in the Philippines [12], 21.5% in

Egypt [13], 12.6% in South Africa [14], and 62% in Colombia [15]. In 1998, the annual number

of EBL outbreaks was reported to be only 99, but by 2019 this had increased to 4,113 [16]. EBL

is designated as a notifiable disease by the Act on Domestic Animal Infectious Diseases Con-

trol, and any whole carcass that is found to have EBL, upon meat inspection, must be

completely discarded. As a result, BLV infection has severely damaged the Japanese beef indus-

try, which is well known for its production of highly expensive Wagyu [17].

The mechanisms by which BLV causes malignant B cell lymphoma remain unclear. Most

BLV-infected cows are asymptomatic carriers, with approximately 30% of these developing

persistent lymphocytosis (PL) and only 0.1% to 5% developing EBL [2, 3, 18]. The BLV

genome uses its own integrase to integrate into the host genome, where it becomes a provirus

and persists throughout the life of the host. Several studies have provided evidence that the

progression of EBL occurs through the dysregulation of various cellular signaling pathways

and is induced by the integration of the BLV genome into the host and the expression of genes

that encode proteins, such as Tax, BLV mRNAs, antisense RNAs, and microRNAs (miRNAs)

[19–22].

MiRNAs are a large class of small non-coding single-stranded RNAs, 19–25 nucleotides in

length, that regulate gene expression at both transcriptional and post-transcriptional levels.

MiRNAs bind to complementary sites on the 3’ untranslated region (UTR) of target genes and,

consequently, regulate post-transcriptional gene expression via mRNA degradation and trans-

lational repression [23]. By targeting multiple transcripts, miRNAs are involved in biological

processes such as cell differentiation, proliferation, and apoptosis [24]. It has been reported

that miRNAs derived from viruses and their hosts are involved in tumorigenesis [25]. For

example in Kaposi sarcoma-associated herpesvirus infection, miRNAs that are derived from

the virus participate in the inhibition of apoptosis by the virus and are thus likely to be

involved in tumorigenesis [26].

Recently, it has been reported that BLV encodes a conserved cluster of miRNAs that are

transcribed by RNA polymerase III (Pol III) [19, 22]. Unlike most host miRNAs, these miR-

NAs are not processed by the endonuclease Drosha, which allows the viral RNA polymerase II

(Pol II) genomic and mRNA transcripts to escape cleavage. Kincaid et al. [19], reported that

one particular BLV miRNA (miR), blv-miR-B4, has nucleotide sequences that are partially

identical to and share common targets with the host miRNA miR-29, which is considered to

be associated with tumorigenesis in humans. In an experimental ovine model, BLV miRNAs

have been shown to represent approximately 40% of all miRNAs present in the B cells of

asymptomatic animals and those in the lymphoma stages of BLV infection [22]. However, it is

unclear how miRNAs derived from BLV contribute to the development of EBL.

PLOS ONE miRNA expression in naturally BLV-infected JB cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0256588 September 10, 2021 2 / 26

blv-miRNAs obtained and used in this study have

been submitted to the DDBJ/EMBL/GenBank DNA

databases under the accession numbers LC600590

to LC600593, LC600597, LC600602, LC600604,

LC600605, LC600608 to LC600610, LC600612,

LC600615 to LC600619, LC600621, LC600623,

LC600627, LC600629 to LC600631, LC600634,

LC600635, LC600637, LC600641, LC600643,

LC600644, LC600646 to LC600648, LC600650,

LC600652, LC600653, LC600658, LC600659,

LC600662 to LC600664, LC600666 to LC600669,

LC600671, LC600673, LC600676, LC600677,

LC600679, LC600681, and LC600682 to

LC600691.

Funding: This study was partly supported by the

Japan Racing and Livestock Promotion

Foundation.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0256588


In this study, we performed comparative analyses of B cell miRNA expression in cattle

uninfected and naturally infected with BLV. In these cattle, the relationships between the

miRNA expression and BLV proviral load, tax/rex gene expression, and AS1 gene expression

were investigated.

Materials and methods

Blood and tissue sample collection, serum isolation, and DNA/RNA

extraction

Blood was collected from the jugular vein of 16 BLV-naturally infected and 6 BLV-uninfected

Japanese Black cattle, bred at the Iwate University Field Science Center. The BLV provirus

genomes of all cattle were examined by quantitative PCR (qPCR), as described below, and

ELISA using anti-BLV antibodies according to the manufacturer’s instructions (JNC Inc.,

Tokyo, Japan). Lymphoma tissues were also obtained from five cattle diagnosed with EBL at

the Iwate University Field Science Center. Details of animals used in this study are shown in

Table 1. All procedures and animals used in this study were approved by the Iwate University

Animal Care and Use Committee (no. A201704).

Genomic DNA was extracted from EDTA-treated whole blood with a magLEAD1 12gC

instrument (Precision System Science, Chiba, Japan) immediately after the blood collection.

RNA was extracted from whole blood collected in PAXgene Blood RNA tubes (PreAnalytix,

Hombrechtikon, Switzerland) and stored at -70˚C for several months after the blood collec-

tion. RNA was also extracted from the bovine B cell leukemia cell line KU-17 [27] with TRIzol

Reagent (Invitrogen, Carlsbad, CA, USA). These DNA and RNA extraction procedures were

performed according to manufacturer’s instructions. Extracted DNA and RNA were stored at

-20˚C and -70˚C, respectively, until analyzed.

Isolation of B cells from peripheral blood mononuclear cells

EDTA-treated whole blood was layered over 60% percoll (GE Healthcare, Tokyo, Japan) in

Leucosep tubes (Greiner Bio-One, Kremsmunster, Austria) and the peripheral blood mononu-

clear cells (PBMCs) were isolated via density gradient centrifugation for 20 min at 1,000 g. The

isolated cells (108 cells) were incubated with 1,000 μL of anti-bovine IgM mouse monoclonal

antibody (diluted 1:100) (BIG73A; VMRD, Pullman, WA, USA), diluted with MACS buffer [2

mM EDTA, 0.5% BSA in PBS (pH 7.2)], at 4˚C for 15 min. The cells were then incubated with

anti-mouse IgG microbeads (Miltenyi Biotec, Bergisch Gladbach, Gemany) at 4˚C for 15 min.

The cells were passed through a cell strainer (EASY strainer; pore size 40 μm, Greiner Bio-

One) and applied to a MACS LS column (Miltenyi Biotec) in the magnetic field of a MACS

separator (Miltenyi Biotec). After washing three times with MACs buffer, the column was

removed from the MACS separator and the magnetically labeled cells were flushed into a col-

lection tube. Approximately 3 x 107–7 x 107 PBMCs were recovered.

The MACS sorted PBMCs (106 cells) were incubated with 20 μL of anti-bovine IgM mouse

monoclonal antibody (diluted 1:100) (PIG45A2; VMRD) at 4˚C for 15 min. The cells were

then stained with 20 μL of FITC-conjugated anti-mouse IgG+IgM antibody (diluted 1:1,000)

(#115-096-068; Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA) at 4˚C for

15 min. After washing twice with PBS, the cells were fixed with 1% paraformaldehyde/PBS.

The percentage of IgM+ B cells was analyzed on a flow cytometer (Bay Bioscience, Kobe,

Japan). FlowJo software (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) was used

for flow cytometric data analysis.
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MicroRNA library preparation

Total RNA, containing miRNA, was extracted from B cells (107 cells per animal) and lym-

phoma tissues using miRNeasy Mini Kits (Qiagen K.K., Tokyo, Japan). The RNA integrity

number (RIN) was determined on an Agilent RNA 6000 Nano Bioanalyzer (Agilent Technolo-

gies, Santa Clara, CA, USA).

The 3’ and 5’ adaptors were ligated to the total RNA extracted from the isolated B cells with

TruSeq Small RNA Library Preparation Kits (Illumina, San Diego, CA, USA). For 3’ adaptor

ligation, total RNA was incubated at 70˚C for 2 min and then transferred to ice. Subsequently,

the following reagents were added to the mixture: 5 μL of 1 μg total RNA, 1 μL of RNA 3’ adap-

tor, 2 μL of Ligation Buffer, 1 μL of RNase Inhibitor, 1 μL of 10× T4 RNA Ligase 2, Deletion

Mutant (Epicentre, Madison, WI, USA). The reaction was incubated at 28˚C for 60 min, 1 μL

of stop solution (Stop oligo) was added, and the reaction mixture was then incubated at 28˚C

for 15 min. For 5’ adaptor ligation, a 5’ RNA adaptor was denatured by heating at 70˚C for 2

min and was then transferred on ice. The following reagents were added to the 3’ adaptor liga-

tion mixture: 1 μL of RNA 5’ adaptor, 1 μL of ATP (10 mM), 1 μL of T4 RNA ligase, and 11 μL

Table 1. Animals used in this study.

Animal No. Breed a Sex b Age (Months) BLV c EBL c

B0.31 JB F 14 − −
B5.31 JB F 68 − −
B9.24 JB F 26 − −
B9.27 JB F 23 − −
B5.23 JB F 67 − −
B0.32 JB F 13 − −
7546 JB F 120 + −
4374 JB F 33 + −
8858 JB C 15 + −
7566 JB C 24 + −
2581 JB F 131 + −
2984 JB C 11 + −
2985 JB C 11 + −
4180 JB F 84 + −
2377 JB F 179 + −
B8.20 JB F 40 + −
B8.40 JB F 33 + −
B6.6 JB F 65 + −
8170 JB F 50 + −
8381 JB F 12 + −
1827 JB F 24 + −
2983 JB F 22 + −
E0425 JB F 212 + +

J14 JB F 78 + +

J19 JB F 43 + +

Iw190523 JB F 31 + +

Iw190607 JB F 33 + +

a JB, Japanese Black.
b F, female; C, castrate.
c BLV, bovine leukemia virus; EBL, enzootic bovine leukosis; +, positive;–, negative.

https://doi.org/10.1371/journal.pone.0256588.t001
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of 3’ adaptor ligation mixture. The reaction mixture was incubated at 28˚C for 60 min and

then transferred on ice. The sequences of the RNA 3’ adaptor, 5’ adaptor, and Stop oligo are

shown in Table 2.

Reverse transcription of adapter ligation products

RNA RT Primer (1 μL) was added to 6 μL of the adaptor ligation mixture, described in the pre-

vious section, heated at 70˚C for 2 min, and then immediately placed on ice. The following

reagents were then added to the ligation mixture: 2 μL of 5× First Strand Buffer, 0.5 μL of 12.5

mM dNTP mix, 1 μL of 100 mM DTT, 1 μL of RNase Inhibitor, and 1 μL of SuperScript II

Reverse Transcriptase (Thermo Fisher Scientific, Waltham, MA, USA). The reaction mixture

was then incubated at 50˚C for 60 min. The sequence of the RNA RT Primer is shown in

Table 2.

PCR amplification and purification of PCR products

The following reagents were added to 12.5 μL of reverse transcription reaction mixture

described in the previous section: 25 μL of PCR mix, 2 μL of miRNA PCR primer, 2 μL of

miRNA PCR primer Index, and 8.5 μL of nuclease-free purified water to make the total reac-

tion mixture up to 50 μL. The PCRs were performed under the following conditions: initial

denaturation at 98˚C for 30 s; followed by 15 cycles of heat denaturation at 98˚C for 10 s,

annealing at 60˚C for 30 s, and extension at 72˚C for 15 s; then a final extension at 72˚C for 1

min. The sequences of the primers used are shown in Table 2. The PCR products (145 bp to

160 bp) were purified on 6% Novex TBE gels (Life Technologies, Waltham, MA, USA), follow-

ing the manufacturer’s instructions. The PCR products were evaluated with a microchip based

capillary electrophoresis system (MultiNA, Shimadzu, Tokyo, Japan), and the concentrations

were measured on a Qubit fluorometer (Thermo Fisher Scientific).

MicroRNA deep sequencing and analysis

MicroRNA analysis was performed using a MiniSeq Sequencing System (Ilumina). The librar-

ies were diluted to 1 nM with 10 mM Tris HCl (pH 8.5) and made up to 5 μL each, to which,

5 μL of 2-fold diluted sodium hydroxide solution (Fluka Analytical, St. Gallen, Switzerland)

was added. The mixture was incubated for 5 min at room temperature, and then 5 μL of 200

mM Tris HCl (pH 7) was added and the reaction mixture kept on ice. The mixed library reac-

tion was diluted to 1.8 pM with hybridization buffer (Ilumina), and then 500 μL of the reaction

mixture was applied to a MiniSeq High Output Reagent Cartridge (Ilumina). Deep sequence

analysis was performed according to the manufacturer’s recommended protocol for small

RNA sequencing. Afterwards, sequencing reads were processed with CLC Genomics Work-

bench software (Ver. 9.5.5; Qiagen KK) to obtain the final miRNA counts for each sample (see

Qiagen tutorial manual for small RNA Analysis using Illumina Data for detail; https://

resources.qiagenbioinformatics.com/tutorials/Small_RNA_analysis_Illumina.pdf). Briefly,

adapter sequences were removed from the partial adapter sequences of the FASTQ file. The

adapter trimming parameters were set to default values; i.e., mismatch cost and gap cost were

2 and 3, respectively; match threshold was selected to “allow end matches”; and the minimum

score at the end was set to 6. Subsequently, for sequence filtering, the minimum and maximum

length values were used as default values; i.e., reads below length of 15 and above length of 55

were discarded, and the sample threshold for the minimum sampling count was set to 1. The

number of copies of each of the resulting small RNAs was counted. To annotate the small

RNA sample, the bovine miRNA database in miRBase 22 [28] (http://www.mirbase.org/blog/

2018/03/mirbase-22-release/) was downloaded. The trimmed sequences were compared
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Table 2. Primers and probes for library preparation and quantitation of BLV provirus, mRNA, and miRNA expression.

Primer Sequences (5’–3’)

For library preparation

RNA 5’ adapter GUUCAGAGUUCUACAGUCCGACGAUC

RNA 3’ adapter (RA3) TGGAATTCTCGGGTGCCAAGG

Stop solution (Stop Oligo) GAAUUCCACCACGUUCCCGUGG

RNA_RT AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA

RNA_PCR AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCGA

RNA_PCR-Index CAAGCAGAAGACGGCATACGAGAT [Index primer] GTGACTGGAGTTCCTTGGCACCCGAGAATTCCA

Index 1 CGTGAT

Index 2 ACATCG

Index 3 GCCTAA

Index 4 TGGTCA

Index 5 CACTGT

Index 6 ATTGGC

Index 7 GATCTG

Index 8 TCAAGT

Index 9 CTGATC

Index 10 AAGCTA

Index 11 GTAGCC

Index 12 TACAAG

Index 13 TTGACT

Index 14 GGAACT

Index 15 TGACAT

Index 16 GGACGG

Index 17 CTCTAC

Index 18 GCGGAC

Index 19 TTTCAC

Index 20 GGCCAC

Index 21 CGAAAC

For BLV provirus

BLVCG-tax 8008F CCATGTGACCGGTTACACGTAT

BLVCG-tax 8093R ACCAATTCGGACCAGGTTAGC

BOS RPPH1-29F CTACGAGCTGAGTGCGCTTAGTC

BPS RPPH1-97R CCTATGGCCCTAGTCTCAGACCTT

BLVCG-tax-8034T-probe FAM-CAGTCCTCAGGCCTT-MGB

BOS RPPH1-54-T-probe VIC-TCTGTCCATTGTCCC-MGB

For mRNA and miRNA expression

BLV_tax/rex_mRNA_F CAGATGGCAAGTGTTGTTGGTT

BLV_tax/rex_mRNA_R GATGGTGACATCATTGGACAAAA

BLV_AS1 real_F ATTTTATTAATTTATCAGCAGGTAATG

BLV_AS1 real_R1 AGTGCCCATAAAGTCCCTTC

boGAPDH_F CCCAGAATATCATCCCTGCTT

boGAPDH_R GCAGGTCAGATCCACAACAGA

boHBP1rt-F TTCAACTGCTTGGCACTGTTTT

boHBP1rt-R CCATTCCTTATTGCTTCCCTTATG

boACTBrt-F AACCAGTTCGCCATGGATGA

boACTBrt-R AAGCCGGCCTTGCACAT

bta-miR-375-F TTTTGTTCGTTCGGCTCG

bta-miR-16a-F TAGCAGCACGTAAATATTGGTG

https://doi.org/10.1371/journal.pone.0256588.t002
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against the bovine miRNA database with CLC software for miRNA gene identification, anno-

tation, and quantification. Specified match parameters were set to default values: mature

length variants (IsomiRs) were set to additional upstream bases, 2; additional downstream

bases, 2; missing upstream bases, 2; and missing downstream bases, 2. The alignment setting

was set to a maximum of 2 mismatches.

Quantification of BLV provirus

We performed duplex quantitative PCR (qPCR) that targeted the BLV tax/rex gene region,

and bovine RPPH1 gene as an internal control. The qPCR was performed under the following

conditions: initial denaturation at 95˚C for 20 s, followed by 40 amplification cycles of dena-

turation at 95ºC for 1 s and annealing/extension at 60ºC for 20 s. Reaction mixtures consisted

of 5 μL of template genomic DNA derived from whole blood, 10 μL of Premix Ex Taq (Probe

qPCR; Takara Bio, Shiga, Japan), 0.4 μL each of 10 μM tax/rex forward and reverse primers,

0.3 μL each of 10 μM RPPH1 Forward and reverse primers, 0.8 μL of 2.5 μM FITC-labeled

TaqMan MGB tax/rex probe (Life Technologies, Tokyo, Japan), 0.8 μL of 2.5 μM VIC-labeled

TaqMan MGB RPPH1 probe (Life Technologies), 0.4 μL of ROX Reference Dye (Takara Bio),

and deionized water to make the total rection volume up to 20 μL. The primer sequences used

in this study are shown in Table 2. The qPCRs were performed on a QuantStudio™ 3 Real-

Time PCR System (Applied Biosystems, Life Technologies, Foster City, CA, USA). Standard

curves were generated by creating 10-fold serial dilutions of standard plasmids that contained

the relevant BLV tax/rex or bovine RPPH1 genes, amplified by the appropriate PCR primers.

The standards for calibration ranged from 100 to 105 copies/reaction and were run in dupli-

cate. The number of BLV copies was indicated as proviral load per 10 ng DNA. The percent of

BLV-infected cells was calculated by the following equation (as there were two copies of the

RPPH1 gene per cell):

½% of BLV‐infected cells ¼ BLV tax=rex copy number� ðRPPH1 copy number� 2Þ � 100�:

Quantification of mRNA and miRNA expression by quantitative RT-PCR

(qRT-PCR)

SYBR Prime Script RT-PCR Kits (Takara Bio) were used for tax/rex, AS1, and bovine HMG

box-containing protein 1 (HBP1) mRNA and miScript II RT Kits (Qiagen KK) were used for

bta-miR-375. For tax/rex, AS1, and bovine HBP1 mRNA, reverse transcription reaction mix-

tures consisted of 400 ng/μL of template RNA, derived from whole blood; 4 μL of 5× prime-

Script Buffer; 1 μL of 50 μM Oligo-dT primer; 1 μL of 100 μM random 6-mer primer; 1 μL of

PrimeScript RT Enzyme Mix 1; and RNase-free water to make the total reaction volume up to

10 μL. The reaction was incubated at 37˚C for 15 min, and then heated at 85˚C for 5 s for

enzyme inactivation and placed on ice. For bta-miR-375, reverse transcription reaction mix-

tures consisted of 300 ng of template RNA, derived from isolated B cells and lymphoma tissues;

4 μL of 5x miScript HiFlex Buffer; 2 μL of 10x miScript Nucleic Mix; 2 μL of miScript Reverse

Transcriptase Mix, and RNase-free water up to a total reaction volume of 20 μL. The reaction

mixture was incubated at 37˚C for 60 min, and then heated at 95˚C for 5 min for enzyme inac-

tivation and placed on ice. The concentrations of cDNAs obtained were calculated by absor-

bance at 260 nm on a NanoDrop One (Thermo Fisher Scientific K.K).

Quantitative RT-PCRs that targeted tax/rex and AS1 mRNAs were performed with

GAPDH mRNA as the internal control. Bovine HBP1 mRNA was targeted with beta actin

(ACTB) mRNA as an internal control [29], and bta-miR-375 was targeted with bta-miR-16a-
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5p as an internal control. For tax/rex, AS1, and bovine HBP1 mRNA, reaction mixtures con-

sisted of 40 ng/5 μL of cDNA, 0.8 μL each of 10 μM forward and reverse primers, 10 μL of

SYBR Premix Ex Taq (Takara Bio), 0.4 μL of Rox Reference Dye (Takara Bio), and 3 μL of ster-

ilized ultrapure water. PCRs were performed under the following conditions: initial denatur-

ation at 95˚C for 30 s, 40 cycles of denaturation at 95˚C for 5 s and annealing/extension at

60˚C for 30 s. The gene copy number was calculated via the standard curve method. For bta-

miR-375, miScript SYBR green PCR Kits (Qiagen KK) were used. Reaction mixtures consisted

of 3 ng of cDNA, 2.5 μL of 10x miScript Universal Primer, 2.5 μL of microRNA-specific

primer, 12.5 μL of 2x QuantiTect SYBR Green PCR Master Mix, and sterilized ultrapure water

up to a total reaction volume of 25 μL. PCRs were performed under the following conditions:

initial denaturation at 95˚C for 15 min; 40 cycles of denaturation at 94˚C for 15 s, annealing at

55˚C for 30 s, and extension at 70˚C for 30 s. The relative miRNA expression levels were calcu-

lated using the ΔΔCT comparative method by Quantstudio™ design and analysis software

(Version 2.4, Thermo Fisher Scientific). The sequences of the primers used are shown in

Table 2.

Statistical analysis

Differences in expression of BLV miRNAs (blv-miRNAs) and bovine miRNAs (bta-miRNAs)

between BLV-infected and BLV-uninfected cattle were assessed using Mann-Whitney test.

Correlations between parameters in BLV-infected cattle were assessed by the Spearman’s cor-

relation coefficients. Differences in bta-miR-375 expression among BLV negative, BLV-posi-

tive, and EBL cattle were assessed by Kruskal-Wallis test with Steel- Dwass post-hoc test.

Differences in expression of BLV miRNAs (blv-miRNAs) and bovine miRNAs (bta-miRNAs)

between BLV AS1 high expression cattle and low expression cattle were assessed using a

Mann-Whitney test. These data analyses were performed by R, a language and environment

for statistical computing (R Core Team, 2020. URL https://www.R-project.org/). Statistical sig-

nificance was determined as p< 0.05.

Results

MicroRNA sequencing reads in B cells of BLV-infected and uninfected

cattle

B cells were isolated from 16 BLV-infected and 6 uninfected cattle at purity levels between 82%

and 97%. The RINs of RNA samples derived from B cells were 6.9 to 10. The numbers of miR-

NAs that were read in these RNA samples were between 1.33 × 106 and 4.12 × 106. Among

these miRNAs, 614 bovine-derived miRNAs (bta-miRNAs) were detected out of 1,064 cur-

rently registered in the database (miRBase) (S1 Table). In addition, the 10 BLV provirus-

derived miRNAs (blv-miR), which were previously reported [22], were also detected (S2

Table).

In BLV-uninfected cattle, four bovine-derived miRNAs accounted for 47% of all miRNAs

expressed in B cells: bta-miR-191-5p (13%), bta-miR-26a-5p (13%), bta-miR-150-5p (11%),

and bta-miR-142-5p (10%). Whereas, in BLV-infected cattle, a BLV provirus-derived miRNA,

blv-miR-B4-3p, was highly expressed in B cells (25%) and blv-miRNAs accounted for 38% of

all miRNAs expressed in B cells (Fig 1, S2 Table).

The miRNA bta-miR-16a-5p had the most consistent number of copies among all 22 cattle.

The read counts of bta-miRNAs, normalized using the bta-miR-16a-5p read count, were com-

pared between BLV-infected and uninfected cattle. We focused on 49 bta-miRNAs because

these miRNAs differed significantly between BLV-infected and uninfected cattle. Among the
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49 bta-miRNAs, 48 bta-miRNAs in BLV-infected cattle were significantly decreased compared

to those in uninfected cattle (p< 0.05, Table 3). In particular, four bta-miRNAs (bta-miR-191-

5p, bta-miR-423-3p, bta-miR-92b-3p, and bta-miR-361-5p) showed the higher ratios (> 5.0)

of read counts between BLV-infected and -negative cattle, and none of the bta-miRNA inter-

quartile ranges overlapped. Only bta-miR-375-3p expression in BLV-infected cattle was signif-

icantly increased compared with those in uninfected cattle (p = 0.0061).

The nucleotide sequences of bta-miRNAs and blv-miRNAs obtained and used in this study

have been submitted to the DDBJ/EMBL/GenBank DNA databases under the accession num-

bers LC600590-LC600593, LC600597, LC600602, LC600604, LC600605, LC600608-LC600610,

LC600612, LC600615-LC600619, LC600621, LC600623, LC600627, LC600629-LC600631,

LC600634, LC600635, LC600637, LC600641, LC600643, LC600644, LC600646-LC600648,

LC600650, LC600652, LC600653, LC600658, LC600659, LC600662-LC600664, LC600666-

LC600669, LC600671, LC600673, LC600676, LC600677, LC600679, LC600681, and

LC600682-LC600691.

Correlation between miRNA sequencing reads and BLV proviral load in

BLV-infected cattle

The read counts of four blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and

blv-miR-B5-5p) had a strong positive correlation with BLV PVL (correlation coefficient (r) >
0.7, p< 0.05, Fig 2A–2D). Among the 49 bta-miRNAs with read counts that differed signifi-

cantly between BLV-infected and uninfected cattle, 31 bta-miRNAs negatively correlated with

PVL (Table 4). In particular, three bta-miRNAs (bta-miR-28-5p, bta-miR-150-5p, and bta-

miR-197-3p) had a strong negative correlation with PVL (r< -0.7, p<0.05, Fig 2E–2F), fol-

lowed by 13 bta-miRNAs (bta-miR-221-3p, bta-miR-22-3p, bta-miR-151-5p, bta-miR-484-5p,

bta-miR-194-5p, bta-miR-425-5p, bta-miR-151-3p, bta-miR-146a-5p, bta-miR-1307-3p, bta-

miR-363-3p, bta-miR-874-3p, bta-miR-106b-5p, and bta-miR-421-3p) with relatively weaker

Fig 1. Percentage of miRNAs expressed in B cells derived from BLV-infected cattle and healthy cattle without BLV infection. The average ratios of

miRNAs expressed in B cells made up of bovine-derived miRNA (bta-miRNA) and/or BLV-derived miRNA (blv-miRNA) were calculated. (A) Healthy

cattle without BLV infection, (B) BLV-infected cattle.

https://doi.org/10.1371/journal.pone.0256588.g001
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Table 3. Comparison of bovine miRNA (bta-miRNAs) sequencing reads between BLV positive and BLV negative cattle.

Name of miRNA BLV-infected (n = 16) BLV-negative (n = 6) p value c Oncogene (ONC) or tumor suppressor (TS) Reference

Median a IQR b Median a IQR b

bta-miR-191-5p 22,468 5,223, 103,053 172,846 151,559, 233,390 0.0002 TS/ONC [30, 31]

bta-miR-26a-5p 109,376 51,793, 127,643 152,887 138,543, 174,790 0.0034 TS/ONC [32–34]

bta-miR-142-5p 32,660 9,553, 72,034 126,224 113,628, 162,294 0.0034 TS [35]

bta-miR-150-5p 59,170 35,803, 63,672 105,905 101,347, 109,417 0.0003 TS/ONC [36, 37]

bta-miR-22-3p 15,139 8,311, 34,125 48,605 33,982, 56,215 0.0045 TS [38]

bta-miR-26b-5p 17,967 11,520, 21,192 25,071 22,133, 28,963 0.0133 TS [32, 39, 40]

bta-miR-375-3p 52,366 31,278, 65,148 18,518 15,515, 19,965 0.0061 TS/ONC [32, 41]

bta-miR-186-5p 5,541 1,793, 15,309 26,465 23,319, 29,157 0.0017 TS [32, 42]

bta-miR-16b-5p 10,556 9,974, 12,339 15,032 13,644, 15,920 0.0266 TS [32, 43]

bta-miR-30c-5p 7,413 4,527, 9,226 13,803 10,992, 15,521 0.0133 TS [44]

bta-miR-29a-3p 5,052 3,053, 6,517 12,687 10,830, 15,162 0.0005 TS/ONC [32, 45, 46]

bta-miR-192-5p 6,767 6,042, 9,642 11,939 8,521, 14,829 0.0487 TS/ONC [47]

bta-miR-151-5p 2,204 1,159, 5,938 8,774 8,136, 9,243 0.0034 TS [48]

bta-miR-6119-5p 3,487 883, 6,666 7,446 6,189, 8,983 0.0328 Other [49]

bta-miR-342-3p 1,611 641, 2,689 5,769 4,894, 7,126 0.0045 TS [50, 51]

bta-miR-425-5p 3,162 1,867, 4,587 6,565 6,395, 6,883 0.0005 TS/ONC [52, 53]

bta-miR-423-3p 795 205, 3,900 5,678 3,994, 9,333 0.0328 TS [54]

bta-miR-146a-5p 1,747 831, 3,229 4,626 3,783, 7,467 0.0170 TS/ONC [55, 56]

bta-miR-142-3p 2,446 1,478, 2,860 4,786 3,747, 5,145 0.0008 TS [57]

bta-miR-29c-3p 1,705 935, 2,020 4,033 3,347, 4,803 0.0012 TS/ONC [32, 45, 46]

bta-miR-423-5p 779 443, 2,531 3,608 2,387, 4,326 0.0426 TS/ONC [58, 59]

bta-miR-151-3p 1,074 842, 2,205 3,258 2,842, 3,642 0.0080 TS [48]

bta-miR-155-5p 1,647 1,263, 2,248 2,684 2,382, 3,511 0.0328 TS/ONC [60, 61]

bta-miR-138-5p 1,407 847, 2,026 2,426 1,955, 2,783 0.0402 TS [62, 63]

bta-miR-148b-3p 1,608 1,110, 1,734 2,585 1,920, 3,148 0.0133 TS [64]

bta-miR-27a-3p 806 353, 1,483 2,448 1,778, 3,153 0.0034 TS/ONC [32, 65, 66]

bta-miR-221-3p 531 251, 1,031 1,918 1,537, 2,227 0.0022 TS/ONC [32, 45]

bta-miR-197-3p 664 461, 848 1,290 1,100, 1,343 0.0017 TS [67, 68]

bta-let-7d-5p 960 726, 1,235 1,448 1,319, 1,548 0.0165 Other [69]

bta-miR-484-5p 294 159, 496 1,101 787, 1,145 0.0001 TS/ONC [70, 71]

bta-miR-92b-3p 260 96, 686 1,292 1,178, 1,558 0.0356 TS/ONC [72, 73]

bta-miR-361-5p 205 38, 787 1,301 1,002, 1,603 0.0133 TS [74]

bta-miR-28-5p 433 202, 795 1,111 999, 1,203 0.0017 TS/ONC [75, 76]

bta-miR-23a-3p 670 269, 936 1,047 955, 1,194 0.0266 TS/ONC [77, 78]

bta-miR-106b-5p 458 291, 719 1,038 918, 1,123 0.0024 ONC [79]

bta-miR-2285f-3p 254 77, 558 876 640, 1,218 0.0183 Other [80]

bta-miR-421-3p 416 283, 635 749 657, 902 0.0170 TS/ONC [32, 81, 82]

bta-miR-532-5p 308 207, 345 526 465, 839 0.0057 TS/ONC [83, 84]

bta-miR-363-3p 237 201, 416 619 567, 639 0.0135 TS [85]

bta-miR-24-2-3p 256 187, 398 517 460, 601 0.0071 ONC [77]

bta-miR-339b-5p 208 83, 313 510 407, 576 0.0061 Other [86]

bta-miR-326-3p 242 220, 293 433 397, 480 0.0109 TS [87]

bta-miR-32-5p 193 150, 250 399 310, 464 0.0005 TS/ONC [88, 89]

bta-miR-194-5p 175 126, 286 363 360, 427 0.0017 TS [32, 90]

bta-miR-107-3p 259 146, 314 385 337, 447 0.0213 Other [91]

bta-miR-874-3p 113 35, 155 258 187, 363 0.0223 TS [92]

(Continued)
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negative correlation coefficients (-0.7< r< -0.6, p< 0.05). Only bta-miR-375-3p had a signifi-

cant positive correlation (r = 0.565, p = 0.0249) with PVL (Fig 2G, Table 4). When bta-miR-

375 expression was compared among BLV-uninfected, BLV-infected, and cattle with EBL via

quantitative RT-PCR, the levels were significantly higher in EBL cattle than in BLV-uninfected

and BLV-infected cattle (BLV-uninfected vs EBL, p = 0.0096; BLV-infected vs EBL, p = 0.0245)

(Fig 2H).

Table 3. (Continued)

Name of miRNA BLV-infected (n = 16) BLV-negative (n = 6) p value c Oncogene (ONC) or tumor suppressor (TS) Reference

Median a IQR b Median a IQR b

bta-miR-374a-5p 142 66, 193 267 233, 288 0.0165 TS/ONC [93, 94]

bta-miR-6524-3p 151 129, 177 248 215, 282 0.0034 Other [95]

bta-miR-1307-3p 114 77, 140 225 183, 233 0.0024 TS/ONC [96, 97]

a Read counts of bta-miRNAs were normalized to bta-miR-16a-5p (accession No. LC600681) read count (x 10,000).
b Interquartile range.
c Statistically significant p values were calculated by Mann-Whitney test.

https://doi.org/10.1371/journal.pone.0256588.t003

Fig 2. Correlations between BLV proviral load and BLV miRNAs (blv-miRNAs) and bovine-derived miRNAs (bta-miRNAs), and expression levels of

bta-miR-375 among BLV-uninfected, BLV-infected, and enzootic bovine leukosis (EBL) cattle. (A–D) Correlations between BLV PVL and blv-miRNA

read counts in B cells derived from BLV-infected cattle. (E–G) Correlations between BLV PVL and bta-miRNAs in B cells derived from BLV-infected cattle.

All read counts of blv-miRNAs and bta-miRNAs were normalized to the read counts of bta-miR-16a-5p. Data were analyzed by Spearman’s correlation

coefficient test; r, correlation coefficient; p, p value. (H) Levels of bta-miR-375 expression, measured by quantitative RT-PCR in B cells derived from BLV-

uninfected (n = 8) and BLV-infected (n = 5) cattle, and in B cell lymphomas (n = 5) derived from EBL cattle. Data were analyzed by Kruskal-Wallis test

followed by Steel-Dwass post-hoc test.

https://doi.org/10.1371/journal.pone.0256588.g002
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Table 4. Correlation between bta-miRNA sequencing reads and BLV proviral load (PVL) and AS1 mRNA expression.

Name of miRNA BLV proviral load (PVL) tax/rex mRNA AS1 mRNA Oncogene (ONC) or tumor suppressor (TS)

r a p value r a p value r a p value

bta-miR-28-5p -0.774 0.00068 -0.597 0.0166 -0.626 0.0111 TS/ONC

bta-miR-150-5p -0.709 0.0029 -0.479 ns -0.735 0.0170 TS/ONC

bta-miR-197-3p -0.709 0.0029 -0.562 0.0258 -0.668 0.0060 TS/ONC

bta-miR-221-3p -0.688 0.00421 -0.54 0.0308 -0.641 0.0090 TS/ONC

bta-miR-22-3p -0.685 0.00443 -0.521 0.041 -0.550 0.0296 TS

bta-miR-151-5p -0.685 0.00443 -0.503 0.0493 -0.603 0.0154 TS

bta-miR-484-5p -0.676 0.00515 -0.409 ns -0.732 0.0018 TS/ONC

bta-miR-194-5p -0.676 0.00515 -0.444 ns -0.532 0.0361 TS

bta-miR-425-5p -0.662 0.00654 -0.479 ns -0.632 0.0102 TS/ONC

bta-miR-151-3p -0.659 0.00685 -0.462 ns -0.547 0.0306 TS

bta-miR-146a-5p -0.629 0.0107 -0.368 ns -0.641 0.0090 TS

bta-miR-1307-3p -0.626 0.0111 -0.494 ns -0.709 0.0029 TS/ONC

bta-miR-363-3p -0.612 0.0136 -0.374 ns -0.479 ns TS

bta-miR-874-3p -0.612 0.0136 -0.497 ns -0.453 ns TS

bta-miR-106b-5p -0.609 0.0142 -0.406 ns -0.644 0.0086 Other

bta-miR-421-3p -0.600 0.0160 -0.456 ns -0.618 0.0126 TS/ONC

bta-miR-142-5p -0.597 0.0166 -0.429 ns -0.553 0.0286 TS

bta-miR-2285f-3p -0.597 0.0166 -0.456 ns -0.503 0.0493 TS/ONC

bta-miR-186-5p -0.585 0.0193 -0.426 ns -0.535 0.0349 TS

bta-miR-24-2-3p -0.585 0.0193 -0.511 0.0432 -0.518 0.0423 Other

bta-miR-29a-3p -0.582 0.0200 -0.462 ns -0.566 0.0240 TS/ONC

bta-miR-342-3p -0.579 0.0208 -0.388 ns -0.632 0.0102 TS/ONC

bta-miR-6119-5p -0.556 0.0276 -0.409 ns -0.568 0.0240 Other

bta-miR-339b-5p -0.556 0.0276 -0.4 ns -0.488 ns TS

bta-miR-191-5p -0.550 0.0296 -0.385 ns -0.609 0.0142 TS

bta-miR-138-5p -0.55 0.0296 -0.232 ns -0.541 0.0327 TS

bta-miR-23a-3p -0.544 0.0316 -0.341 ns -0.632 0.0102 ONC

bta-miR-423-5p -0.535 0.0349 -0.366 ns -0.556 0.0286 TS

bta-miR-27a-3p -0.524 0.0397 -0.385 ns -0.544 0.0316 TS/ONC

bta-let-7d-5p -0.515 0.0437 -0.411 ns -0.697 0.0036 Other

bta-miR-29c-3p -0.509 0.0464 -0.429 ns -0.553 0.0286 TS/ONC

bta-miR-92b-3p -0.491 ns -0.302 ns -0.641 0.0090 TS

bta-miR-423-3p -0.476 ns -0.306 ns -0.624 0.0116 TS/ONC

bta-miR-326-3p -0.468 ns -0.457 ns -0.438 ns TS/ONC

bta-miR-32-5p -0.462 ns -0.318 ns -0.453 ns TS

bta-miR-142-3p -0.438 ns -0.253 ns -0.268 ns TS/ONC

bta-miR-155-5p -0.432 ns -0.397 ns -0.571 0.0232 TS/ONC

bta-miR-30c-5p -0.415 ns -0.221 ns -0.5 ns TS/ONC

bta-miR-361-5p -0.412 ns -0.265 ns -0.488 ns TS/ONC

bta-miR-26a-5p -0.409 ns -0.279 ns -0.524 0.0397 TS

bta-miR-148b-3p -0.397 ns -0.203 ns -0.488 ns TS/ONC

bta-miR-16b-5p -0.374 ns -0.121 ns -0.468 ns TS

bta-miR-532-5p -0.356 ns -0.255 ns -0.671 0.0057 TS

bta-miR-374a-5p -0.344 ns -0.162 ns -0.412 0.1140 ONC

bta-miR-26b-5p -0.309 ns -0.315 ns -0.265 0.3210 TS/ONC

bta-miR-107-3p -0.306 ns -0.25 ns -0.565 0.0243 Other

(Continued)
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Correlation between miRNA copies and BLV tax/rex and AS1 expression in

BLV-infected cattle

The expression of BLV tax/rex and AS1 genes in PBMCs were quantified by qRT-PCR. BLV

tax/rex and AS1 mRNA copy numbers were correlated against blv-miRNAs and bta-miRNAs

copies. BVL-infected cattle had between 1.6 and 91 BLV tax/rex mRNA copies per 104 B cells

and 2.1 to 1,388 AS1 mRNA copies per 104 B cells. There was no significant correlation

between tax/rex and AS1 mRNA expression (S1A and S1B Fig).

BLV tax/rex mRNA copy number positively correlated with five blv-miRNAs (blv-miR-B1-

5p, blv-miR-B2-3p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) (Fig 3A–3E). In addi-

tion, BLV tax/rex mRNA copy number negatively correlated with bta-miR-28-5p (r = -0.597,

p = 0.0166), bta-miR-197-3p (r = -0.562, p = 0.0258), bta-miR-22-3p (r = -0.521, p = 0.041),

bta-miR-24-2-3p (r = -0.511, p = 0.0432), and bta-miR-151-5p (r = -0.503, p = 0.0493) (Fig 3F–

3H).

There was a positive correlation between AS1 mRNA copy number and two blv-miRNAs

(blv-miR-B1-5p and blv-miR-B2-5p) (Fig 3I and 3J). Among the 49 bta-miRNAs that had sig-

nificantly different read counts between BLV-infected and BLV-uninfected cattle, 34 of them

had a significant negative correlation with AS1 mRNA expression (Table 4). In particular,

three bta-miRNAs (bta-miR-150-5p, bta-miR-484-5p, and bta-miR-1307-3p) had a strong

negative correlation with AS1 mRNA (r< -0.7, p<0.05) (Fig 3K–3M), followed by 15 bta-

miRNAs (bta-miR-191-5p, bta-miR-151-5p, bta-miR-342-3p, bta-miR-425-5p, bta-miR-423-

3p, bta-miR-146a-5p, bta-miR-221-3p, bta-miR-197-3p, bta-let-7d-5p, bta-miR-92b-3p, bta-

miR-28-5p, bta-miR-23a-3p, bta-miR-106b-5p, bta-miR-421-3p, and bta-miR-532-5p) that

had relatively weaker negative correlation coefficients (p< 0.05).

HMG-box transcription factor 1 (HBP1) expression. The expression levels of HBP1
mRNA in B cells derived from BLV-infected cattle did not differ from those of BLV-uninfected

cattle. HBP1 mRNA expression in a bovine B cell tumor cell line, KU-17 was lower than that in

B cells derived from both BLV-infected and -uninfected cattle (S2 Fig).

Discussion

In this study, we performed deep sequencing analysis to comprehensively compare miRNAs

expressed in B cells derived from BLV-infected healthy cattle and those derived from BLV-

uninfected cattle and determined the correlations between B cell miRNAs and the pathogene-

sis of BLV. Furthermore, the correlations between B cell miRNAs and BLV proviral load

(PVL), BLV tax/rex and AS1 mRNA expression were also investigated.

Ten BLV provirus-derived microRNAs (blv-miRNAs) were detected in B cells derived from

BLV-infected cattle, and these blv-miRNAs accounted for 38% of all detected miRNAs. This

is in agreement with a study that reported that approximately 40% of total miRNAs were

Table 4. (Continued)

Name of miRNA BLV proviral load (PVL) tax/rex mRNA AS1 mRNA Oncogene (ONC) or tumor suppressor (TS)

r a p value r a p value r a p value

bta-miR-192-5p -0.085 ns -0.221 ns -0.229 ns TS

bta-miR-6524-3p 0.359 ns 0.400 ns 0.288 ns TS/ONC

bta-miR-375-3p 0.565 0.0249 0.415 ns 0.174 ns TS

a The correlation coefficients were analyzed by Spearman’s correlation test.

ns, no significant difference.

https://doi.org/10.1371/journal.pone.0256588.t004
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Fig 3. Correlations between BLV tax/rex and AS1 mRNA expression levels against BLV miRNA (blv-miRNA) and bovine-derived

miRNA (bta-miRNA) read counts in B cells derived from BLV-infected cattle. All read counts of blv-miRNAs and bta-miRNAs were

normalized to read counts of bta-miR-16a-5p. (A–H) BLV tax/rex and (I–M) AS1 mRNA copy numbers were normalized to GAPDH
mRNA copy number. Data were analyzed by Spearman’s correlation coefficient test; r, correlation coefficient; p, p value.

https://doi.org/10.1371/journal.pone.0256588.g003
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blv-miRNAs in B cell lymphoma derived from sheep experimentally infected with BLV [22].

These results suggest that blv-miRNAs are constantly expressed at a high rate in B cells in

healthy BLV-infected cattle, from the asymptomatic stage to the onset of EBL.

The risk of EBL onset in BLV-infected cattle harboring higher PVLs is higher than that in

BLV-infected cattle harboring lower PVLs [98]. The read counts of four blv-miRNAs (blv-

miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) had strong positive correla-

tions with PVL. Among these blv-miRNAs, blv-miR-B4-3p had the highest sequencing reads,

which is in agreement with a previous study that showed blv-miR-B4-3p had the highest num-

ber of read counts in B-cell lymphoma derived from sheep experimentally infected with BLV

[22]. The blv-miR-B4-3p has seven bases in common with the 5’ flanking region of the host

genome-derived miR-29 family (miR-29a, miR-29b, and miR-29c) [19], suggesting that blv-

miR-B4-3p and the miR-29 family have similar functions. The miR-29 family is involved in

cell proliferation, apoptosis, angiogenesis, and metastasis in a variety of human tumor cells

[46, 99]. The blv-miR-B4-3p also promotes cell proliferation by down-regulating the expres-

sion of a transcription repressor HMG box-containing protein 1 (HBP1), which suppresses the

cell cycle of ovine malignant B cell lymphoma in vitro [19, 22, 100]. However, the results of

this study show that HBP1 gene expression was not decreased in B cells derived from healthy

BLV-infected cattle. These results suggest that BLV provirus-derived miRNAs, including blv-

miR-B4-3p, modulate proliferation and apoptosis of BLV-infected B cells in an HBP1-inde-

pendent manner and contribute to the increased PVL seen prior to the onset of EBL.

Of the 49 bta-miRNAs that had significant differences in their read counts between BLV-

infected and uninfected cattle, 32 bta-miRNAs significantly correlated with PVL (Table 4); 31

bta-miRNAs had a negative correlation with PVL and 1 (bta-miR-375-3p) had a positive corre-

lation with PVL. Of the 31 miRNAs that had negative correlations with PVL, 3 bta-miRNAs

(bta-miR-28-5p, bta-miR-150-5p and bta-miR-197-3p) had a strong negative correlation (r<
-0.7, p< 0.01). MiR-28 controls cell proliferation, is down-regulated in B-cell lymphomas

[75], and reduces HTLV replication and infection [101]. The role of miR-150 in human cancer

is context-dependent as this miRNA can have either oncogenic or tumor suppressor activity in

cells that originate from different tissues. This is highlighted by the upregulated expression of

miR-150 in B cells from chronic lymphocytic leukemia (CLL) [102, 103] but downregulated

expression in chronic myeloid leukemia [104, 105] and mantle cell lymphoma [106]. MiR-197

functions as a tumor suppressor in multiple myeloma and hepatocellular carcinoma and as a

key repressor of the p53-dependent apoptotic cascade in lung cancer [67, 68, 107]. Moreover,

12 of the 13 bta-miRNAs with relatively weaker negative correlation coefficients (-0.7< r<

0.6) function as tumor suppressors and/or oncogenes. In particular, miR-146a has been dereg-

ulated in HTLV-1-transformed T-cells [108]. Taken together, these results suggest that

increased PVL down-regulates the expression of bta-miRNAs, the majority of which have

functions involved in suppressing cell proliferation and viral replication.

There were positive correlations between the expression of tax/rex mRNA and the read

counts of five blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-3p, blv-miR-B2-5p, blv-miR-B4-3p,

and blv-miR-B5-5p). In addition, BLV tax/rex mRNA copy number showed a negative correla-

tion with 5 bta-miRNAs (bta-miR-28-5p, bta-miR-197-3p, bta-miR-221-3p, bta-miR-22-3p,

and bta-miR-151-5p), which are associated with tumorigenesis [38, 45, 48, 67, 68, 75, 76]. In

HTLV infection, HTLV-1 Tax protein does not affect the expression of provirus-derived

miRNA [109] whereas HTLV-1 Tax protein suppresses the expression of host genome-derived

miRNAs in adult T-cell leukemia [110, 111]. Our results indicate that BLV Tax protein up-reg-

ulates the expression of provirus-derived miRNAs, such as blv-miR-B4-3p, to increase the

PVL, and down-regulates some host-derived miRNA expression levels. However, the number

of host-derived miRNAs that were associated with tax/rex mRNA was significantly reduced,
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and the correlation coefficient was lower than those associated with AS1 mRNA. Therefore,

the mechanisms by which Tax protein contributes to tumor development by regulating provi-

rus-derived miRNAs differs between BLV and HTLV-1. The ability of AS1 to reduce the

expression of host-derived miRNAs might be more important than that of tax/rex.

Little is known about the function of the BLV AS1 gene, which is encoded by the minus

strand of BLV provirus. AS1 transcripts are not present in the cytoplasm and AS1 protein has

not been identified [20], suggesting that the AS1 gene functions as transcripts (RNA), but not

as protein. In this study, there was a positive correlation between AS1 transcripts and the

expression levels of two of the five blv-miRNAs (blv-miR-B1-5p and blv-miR-B2-5p), whereas

there was a positive correlation between tax/rex transcripts and the read counts of the five blv-

miRNAs. Furthermore, the correlation coefficient with AS1 was lower than that with tax/rex.

Although the reason is unknown, the interaction with bta-miRNAs might be different between

tax/rex transcribed from the 5’ flanking region and AS1 transcribed from the 3’ flanking

region. In addition, blv-miR-B1-5p and blv-miR-B2-5p might more strongly influence AS1
transcription than do blv-miR-B4-3p, blv-miR-B2-3p, and blv-miR-B5-5p.

Of the 31 bta-miRNAs that had a negative correlation with PVL, 24 bta-miRNAs also had a

negative correlation with AS1 mRNA expression, and the majority of the bta-miRNAs func-

tion as tumor suppressors or oncogenes (Table 4). In particular, bta-miR-150-5p, an important

tumor suppresser of leukemia/lymphoma that targets Nanog (a homeobox transcription regu-

latory factor involved in stem cell pluripotency) [36, 112], had a strong negative correlation

with AS1 mRNA expression. MiR-150 is expressed at high levels in mature T and B cells, is

downregulated in regulatory T cells (Tregs) through the action of Foxp3 [113], is downregu-

lated in HTLV 1-infected cells, and is upregulated in adult T cell leukemia/lymphoma (ATLL)

cells [114, 115]. Our data for BLV-infected B cells is consistent with the down-regulation of

miR-150 in HTLV 1-infected cells. In addition, the 3’ UTR of HIV-1 mRNA is targeted by

miR-150 and miR-28, and these interactions influence the ability of the virus to effectively

infect CD4+ T cells, monocytes, and macrophages [116, 117]. MiR-150 specifically targets the

signal transducer and activator of transcription 1 (STAT1) 3’ UTR, reducing STAT1 expres-

sion and dampening STAT1-dependent signaling in human T cells [118]. HTLV-I–trans-

formed and ATL-derived cells have reduced levels of miR-150 expression, which coincides

with increased STAT1 expression and STAT1-dependent signaling. STAT1 plays a role in

immune modulatory functions, anti-viral responses, apoptosis, and anti-proliferative

responses [119]. In addition, STAT1 can act as a potent tumor promoter of leukemia develop-

ment [120]. Interestingly, HBZ interacts with STAT1 and enhances its transcriptional activities

[121]. Assuming that AS1 has the same function as HBZ, AS1 might activate STAT1 and pro-

mote lymphomagenesis. MiR-484 and miR-1307 also function as tumor suppressors or onco-

genes in several cancers [96, 97, 122, 123]. In particular, miR-484 is down-regulated in

malignant B cell lymphoma [124]. Therefore, two of the three miRNAs that have strong nega-

tive correlations with AS1 mRNA expression were associated with lymphomagenesis.

Moreover, 12 of the 15 bta-miRNAs with relatively weaker negative correlations to AS1
mRNA expression (-0.7< r< -0.6) also function as tumor suppressors, oncogenes, or both.

Our study shows that both miR-532-5p and miR-106b-5p are down-regulated and have a neg-

ative correlation with AS1 mRNA expression, which is consistent with the results of another

study that showed that miR-532-5p and miR-106a-5p are significantly down-regulated in

HTLV-1 asymptomatic carriers [125]. MiR-106b targets the cell cycle regulatory gene p21

(CDKN1A) and is also specifically downregulated in HIV-1 infected CD4+ T cells [126]. MiR-

197 induces apoptosis and suppresses tumorigenicity in multiple myeloma [67]. MiR-221

inhibits erythroleukemic cell growth [127]. MiR-425 inhibits proliferation of CLL cells [128].

MiR-342 suppresses the proliferation and invasion of acute myeloid leukemia [51]. MiR-27a
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functions as a tumor suppressor gene in acute leukemia [66]. MiR-191 displays tumor-type

specific roles in tumorigenesis, as miR-191 inhibits cyclin-dependent kinase 6 (CDK6) expres-

sion in thyroid follicular cancer [129]. Our results suggest that AS1 may function to down-reg-

ulate the expression of bta-miRNAs that suppress cell proliferation, BLV replication, or both.

In contrast, miR-146a is an NF-κB-dependent gene and is important in the control of Toll-like

receptor and cytokine signaling [130]. In addition, miR-146a is highly expressed in HTLV-

1-infected T-cell lines and is directly induced by Tax protein through the activation of NF- κB

signaling [108, 131]. However, our results were inconsistent with those found in HTLV

1-infected cells. BLV tax and HTLV tax may have different functions for miR-146a. Therefore,

these cellular miRNAs may also be pivotal in BLV latency and tumorigenesis.

AS1 mRNA copy number was negatively correlated with six bta-miRNAs (bta-miR-92b-3p,

bta-miR-423-3p, bta-miR-155-5p, bta-miR-26a-5p, bta-miR-532-5p, and bta-miR-107-3p),

which were not associated with PVL. Five miRNAs (miR-92b, miR-423-3p, miR-155-5p, miR-

26a-5p and miR-523-5p) function as both oncogene and tumor suppressor genes. In particu-

lar, miR-155- upregulation has been reported in HTLV-1 cell lines and adult T-cell leukemia

(ATL) patients [114, 132]; however, our results are inconsistent with this and showed that

expression levels of miR-155-5p were significantly decreased. MiR-26a-5p is frequently down-

regulated in various types of cancer, suggesting that these miRNAs function as tumor suppres-

sors by targeting multiple oncogenes, whereas there are some reports that miR-26a promotes

tumorigenesis [34, 133, 134]. Since sequencing reads of bta-miR-26a, as well as that of bta-

miR-191-5p, were very high in B cells from both BLV-uninfected and infected cattle compared

to that of other miRNAs, miR-26a seems to be necessary for B cell proliferation, survival, or

both. Interestingly, the target sequence of miR26a/b exists in the 3’-UTR of Cell-Division

Cycle (CDC)6, and CDC6 gene expression is suppressed by miR-26a/b [135]. CDC6 protein is

a key factor for loading the helicase mini-chromosome maintenance (MCM) proteins onto

replication origins for the assembly of the pre-replicative complex (pre-RC) at the M-to-G1

phase transition, which is required to establish replication licensing [136, 137]. Overexpression

of CDC6 gene has been shown to contribute to oncogenesis [138]. Therefore, it is possible that

these five bta-miRNAs are affected by AS1 specifically, as there are no associations between

these bta-miRNAs and PVL. MiR-26a may be an important miRNA for BLV induced

lymphomagenesis.

Three bta-miRNAs (bta-miR-363-3p, bta-miR-874-3p, and bta-miR-339b) were negatively

correlated with PVL; however, these were not associated with either tax/rex or AS1 mRNA

copy number. Although the reason is unknown, these bta-miRNAs might be affected by PVL

via other accessory genes, such as G4 or R3, rather than tax/rex and AS1.

In addition to bta-miR-375 expression significantly correlating with PVL in healthy BLV-

infected cattle, at the onset of EBL, bta-miR-375 expression increased to significantly higher

levels than those in healthy BLV-infected and uninfected cattle. Several organs express miR-

375, which is significantly down-regulated in multiple types of cancer, although it has been

found to be up-regulated in prostate and breast cancers [41]. This particular miRNA is a cru-

cial regulator of phagocyte infiltration and the subsequent development of a tumor-promoting

microenvironment [139]. In EBL, miR-375 up-regulation may be important for tumor devel-

opment. Furthermore, our result has confirmed that bta-miR-375 expression levels can be

used to distinguish between healthy BLV-infected and EBL cattle. This indicates that bta-miR-

375 may be used as a diagnostic biomarker of EBL onset.

The deletion of the miR-15/16 cluster accelerates the proliferation of both human and

mouse B cells by modulating the expression of genes so as to control cell cycle progression. In

addition, the miR-15/16 cluster has been shown to be deleted or its expression down-regulated

in two-thirds of B cell chronic lymphocytic leukemia (B-CLL) cases, which is characterized by
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the clonal expansion of CD5+ B cells and is similar to that seen in EBL [2, 140, 141]. In this

study, however, the expression of bta-miR-16a was the most stable in B cells, among all 22 cat-

tle, both BLV-infected and BLV-uninfected cattle, and was used as the internal control to nor-

malize the read counts of other bta-miRNAs. Although bta-miR-16b was significantly down-

regulated in BLV-infected cattle, its down-regulation was not affected by PVL or AS1 expres-

sion. Furthermore, the expression levels of bta-miR-15a and -15b in the B cells of BLV-infected

cattle did not different significantly from those in BLV-uninfected cattle. This suggests that the

bta-miR-15/16 cluster may not be involved in B cell lymphoma caused by BLV.

In conclusion, our deep sequencing analysis demonstrated that BLV provirus-derived blv-

miRNAs are preferentially expressed in B cells and correlate with PVL in healthy BLV-infected

cattle. In contrast, the expression of some bovine-derived bta-miRNAs, which are believed to

be involved in tumor and/or tumor suppression, were significantly down-regulated. These

results suggest that BLV promotes lymphomagenesis by down-regulating the expression of

bta-miRNAs that have tumor-suppressing functions. However, this lymphomagenesis promo-

tion involves AS1 and blv-miRNAs rather than the tax/rex genes and is associated with

increased PVL. Further studies are needed to investigate the molecular function of blv-miR-

NAs and bta-miRNAs in the pathogenesis of EBL induced by BLV.
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S1 Fig. Proviral load, BLV tax/rex and AS1 mRNA expression levels in B cells derived from

BLV-infected cattle. (A) Proviral load (PVL) is indicated by copies/10 ng DNA. BLV tax/rex
and AS1 mRNA copy numbers were normalized to GAPDH mRNA copy number. Data are

presented as box and whisker plots, where boxes encompass values between the 5th and 95th

percentiles and vertical lines represent median values. (B) There was no significant correlation

between tax/rex and AS1 mRNA expression (r = 0.2893, p = 0.2748). Data were analyzed by

Spearman’s correlation coefficient test; r, correlation coefficient; p, p value.

(TIF)

S2 Fig. HBP1 mRNA expression levels in B cells derived from BLV negative and BLV-

infected cattle, and an EBL derived tumor cell line, KU-17. HBP1 mRNA copy number was

normalized to ACTB mRNA copy number. The expression levels of HBP1 mRNA in B cells

derived from BLV-infected cattle did not differ from those of BLV-uninfected cattle
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than that in B cells derived from both BLV-infected and -uninfected cattle. Data were analyzed

by Kruskal-Wallis test with Steel-Dwass post-hoc test.

(TIF)
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